On the other hand energy carrier is a substance that is only able to move previously acquired energy from one place to another. To be accurate, water molecule is energetically very advantageous for both oxygen and hydrogen atoms and needs much energy to disintegrate it again into hydrogen and oxygen atoms, or better H2 and O2 molecules, therefore H2 and O2 are only carrying energy. .
There is more hydrogen in gasoline than there is in liquid hydrogen. Configuration of hydrogen atoms in gasoline is much more space saving than in pure liquefied hydrogen, therefore larger storage tanks are needed to store it.
Electrolysis is not usually the best way to generate hydrogen. Most of the today's hydrogen comes from raw petrol as one of the by-products of petroleum processing. According to United States Alternative Fuels Data Center (2000, WWW) now, hydrogen is made using the following two methods. Electrolysis: Uses electrical energy to split water molecules into hydrogen and oxygen. Applying low DC voltage will result in releasing hydrogen on one electrode and oxygen on the other. The electrical energy can come from electricity production sources including renewable fuels. United States Department Of Energy (DOE) has concluded that electrolysis is unlikely to become the predominant method for large quantities of hydrogen production in the future. (2000, WWW) The best electrolysis is only 62 percent efficient. Synthetic gas (methane) reformation: Predominant method of Hydrogen producing is stream reforming or partial oxidation of natural gas, where other hydrocarbons can be used as feedstocks (for example biomass or coal can be gasified and used in a steam reforming process to create hydrogen). Commercial methane reformation can be around 68 percent efficient. According to Stanford University research of hydrogen (2000, WWW) the main present way of getting hydrogen is steam methane reformation and this will probably remain the most economical way as long as methane (natural gas) is available cheaply and in large quantities.