Nuclear Power is a very complex subject and deals with a lot of social, scientific and political issues. The scientific side to Nuclear Power is probably the most complex of the three. Nuclear Power can turn you into ash in nanoseconds, render you retarded, or simply power your home. The process of nuclear fission, safety, destruction, will be discussed in the following pages along with history, present and future of this technology.
In the process of fission, two major parts are required on the atomic level, an element usually uranium 235 which has 235 protons and neutrons in its nucleus and a neutron. In a nuclear reactor the uranium used is always enriched which has an increased amount of fissionable nuclei. In the process of nuclear fission a uranium 235 molecule is split in two similar sized pieces after being hit by a neutron, after a neutron. The nucleus becomes suddenly so unstable that it splits into two major fragments and releases, on the average, two or three neutrons. Of these neutrons, at least one must succeed in producing another fission if the chain reaction is to persist. Billions of fissions will occur in a fraction of a second, thus a controlled chain reaction. I will discuss an uncontrolled chain reaction later. A large amount of energy is released after this process. This process is highly contained and controlled, insuring that the enormous amount of energy released is utilized. A small portion of the energy released is in the form of radiation but most of the energy occurs in the form of kinetic energy or heat. All of the movement during the fission process creates heat and this heat can be used to raise the temperature of water into high-pressure steam. The steam is used to turn a turbine and its mechanical energy is converted into electricity by a generator. The typical fission reaction involving Uranium 235 is, .
92 U235 + 1 neutron = 38 Sr96 + 54 XE138 + 2 neutrons+energy.