EPA is also working with the vehicle and fuel industries to test motor vehicle emissions for the presence of dioxin.
EPA estimates that mobile (car, truck, and bus) sources of air toxics account for as much as half of all cancers attributed to outdoor sources of air toxics. This estimate is not based on actual cancer cases, but on models that predict the maximum number of cancers that could be expected from current levels of exposure to mobile source emissions. The models consider available health studies, air quality data, and other information about the types of vehicles and fuels currently in use. Nonroad mobile sources (such as tractors and snowmobiles) emit air toxics as well.(Lee, 18).
Some toxic compounds are present in gasoline and are emitted to the air when gasoline evaporates or passes through the engine as unburned fuel. Benzene, for example, is a component of gasoline. Cars emit small quantities of benzene in unburned fuel, or as vapor when gasoline evaporates.
A significant amount of automotive benzene comes from the incomplete combustion of compounds in gasoline such as toluene and xylene that are chemically very similar to benzene.(Lee, 19) Like benzene itself, these compounds occur naturally in petroleum and become more concentrated when petroleum is refined to produce high octane gasoline.
Formaldehyde, acetaldehyde, diesel particulate matter, and 1,3-butadiene are not present in fuel but are by-products of incomplete combustion. Formaldehyde and acetaldehyde are also formed through a secondary process when other mobile source pollutants undergo chemical reactions in the atmosphere.
The emissions that come out of a vehicle depend greatly on the fuel that goes into it. Consequently, programs to control air toxics pollution have centered around changing fuel composition as well as around improving vehicle technology or performance. One of the first, and most successful programs has been the removal of lead from gasoline.