Type a new keyword(s) and press Enter to search

Genetic Modification of Foodstuffs

 

            
             Virtually every crop we eat have undergone hundreds of years of genetic modification by farmers and scientist in search of desirable traits. Selective breeding and hybrid strains have contributed immeasurably to farm productivity during this time. Over the past 30 years however, genetic engineering has been revolutionized. While before, a farmer wanting to develop a frost resistant tomato would be able to breed towards one only if the necessary genes were available somewhere in tomatoes or a near relative to tomatoes, modern biological engineering techniques overcome such restrictions. Genetic traits from outside a species" gene pool, in the tomato's case from an arctic fish, can be spliced into the organism to create an entirely different species, a transgenic organism with the typical traits of a tomato and frost resistance from a fish. .
             The most widely used method of gene splicing, recombinant DNA, uses biochemical "scissors" called restriction enzymes to cut the strings of DNA, selecting required genes. These are then "ferried" by a virus or a bacterium that infects the host, smuggling the gene into the plant's DNA. In this way scientists have been able to create slow ripening and seedless fruit, crops that grow in unfavourable conditions and are resistant to disease or herbicides and milk from cows given a genetically engineered growth hormone. .
             The benefits of gene technology in terms of food production are enormous. The most common genetically engineered crops contain modifications that make the plants resistant to certain diseases and herbicides, or allow them to produce their own pesticides, thereby eliminating or reducing the need to spray. So-called "Bt corn," for example, contains a gene resistant to the harmful mycotoxin fungus and herbicide producers, Monsanto have created a strain of soybeans genetically modified to be unaffected by their product Roundup. The soybean farmer therefore can avoid targeting specific weeds and require just one application of a general weed-killer, reducing costs and agricultural waste run-off.


Essays Related to Genetic Modification of Foodstuffs