Type a new keyword(s) and press Enter to search

Genetic Engineering

 

What other form of science or technology allows an individual to create an entirely new species of organism that in turn produces insulin to save human lives? It carries a wealth of information, but also a chasm of criticism and doubt. Mendel first experimented with inheritance in the nineteenth century. In the 1950s, Watson and Crick devised the structure of DNA, the double helix. By the 1970s, scientists began splicing and adhering DNA fragments to other DNA fragments in effect creating recombinant DNA. These findings were the essential beginning of modern genetics, bringing forth the building blocks to create entirely new beings to suit human needs. Creating new life forms has been the subject of folklore and science fiction novels for centuries. Mary Shelley's, Frankenstein, of the 19th century, is a exquisite example of science gone haywire, as a monster is constructed much like a patch-work quilt. "When foreign DNA is transferred by genetic engineering to a microbe, plant or animal, a transgenic organism is the result (Aldridge 113)." Creating new life forms today is certainly not a thing of the past. Through genetic engineering, transgenic organisms are created to improve upon nature, to act as bioreactors that make useful products, or to act as models for understanding basic biology. They may not appear as foreign to this earth, but they do contain at least one altered gene. One may argue that humans have no right to intervene with evolution because of the way it allows the setting aside of species barriers. However, another may argue that humans have been interfering with evolution since the dawn of agriculture, with the development of plant and animal breeding, while genetic engineering is just a sophisticated way of doing something particularly ancient. There are arguments on each side and still more arising in the areas of animal rights, patenting, and environmental and ecosystem concerns.


Essays Related to Genetic Engineering