The aim of my investigation is to investigate how length affects the resistance of a length of wire.
Resistance is the force, which opposes the flow of an electric current around a circuit so that energy is required to push the charged particles around the circuit. Resistance is measured in ohms. A resistor has the resistance of one ohm if a voltage of one volt is requires to push the current of one amp through it.
Resistance occurs when the electrons travelling along the wire collide with the atoms of the wire. .
These collisions slow down the flow of electrons causing resistance. Resistance is a measure of how hard it is to move the electrons through the wire.
Wire length: If the length of the wire is increased then the resistance will also increase as the electrons will have a longer distance to travel and so more collisions will occur. Due to this, the length increase should be directly proportional to the resistance increase.
To measure and record the results for this factor is simple, the results would be collected and could show a connection between the length of the wire and the resistance given by the wire. This is why I have chosen to investigate how resistance changes with length.
Ohms law, V=I/R. This says that for a certain current (charge flowing at a certain rate), there will be a greater voltage across the wire if it has more resistance.
This tells me that the voltage measures the amount of energy used up in getting each coulomb of charge through the wire. The units of volts are the same as joules per coulomb. Therefore, Ohms law says the more resistance means more energy used to pass through the wire. Resistance is a measure of how much energy is needed to push the current through something. The electrons carrying the charge are trying to move through the wire, but the wire is full of atoms that keep colliding in the way and making the electrons use more energy. .
Preliminary Method.